X-Ray Structure of the Hexa(μ_2 -arenethiolato-)tetra(arenethiolato)tetracobaltate(11) Dianion, [(CoSPh)₄(μ_2 -SPh)₆]²⁻, a New Tetrahedral Tetracobalt Thiolate Cluster

By IAN G. DANCE*

(School of Chemistry, University of New South Wales, Kensington, N.S.W. 2033, Australia)

and JOSEPH C. CALABRESE

(Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706)

thiolate ligands RS⁻ have been encountered in conventional protic media as very insoluble compounds,¹ with structures presumed to be extensively non-molecular,² accumulating biochemical knowledge of metal-thiolate prosthetic groups, particularly the iron-sulphur-cysteine enzymes,³ has revealed the existence of metal-thiolate complexes in protein environments⁴ and redirected chemical attention to the

ALTHOUGH binary complexes of many metals with mono-

importance of steric and medium influences on the structural and dynamic molecularity of metal-thiolate compounds.⁵

With cobalt(II), the only⁶ characterized molecular binary thiolate complexes are the emerald-green tetrahedral species $[Co(SR)_4]^{2-}$, $R = C_6H_5$ or C_6F_5 .⁷ We report that the equilibrium (1) exists in MeCN-EtOH solutions of

$$5[\operatorname{Co}(\operatorname{SPh})_4]^{2-} + 3\operatorname{Co}^{2+} \rightleftharpoons 2[\operatorname{Co}_4(\operatorname{SPh})_{10}]^{2-} \tag{1}$$

cobalt(II) nitrate and PhS^- (PhSH + Bun_3N). The intensely orange-brown species $[Co_4(SPh)_{10}]^{2-}$ predominates at $[Co^{2+}]/[PhS^{-}]$ ratios greater than ca. 0.35, and may be crystallized readily with the Me₄N⁺ cation. The structure[†] of the dianionic cluster is shown in the Figure. Four cobalt atoms form a tetrahedron, with six edge-bridging and four terminal thiolate groups. The $\mathrm{Co}_4\mathrm{S}_{10}$ framework, structurally analogous to adamantane, $Me_4Ge_4S_6$,⁸ and P_4S_{10} , is effectively but not rigorously of T_d symmetry; the six Co-Co distances are in the range 3.85-3.89 Å; Co-S $(bridging) = 2.32 \pm 0.01 \text{ Å}, \text{ Co-S} (terminal) = 2.25 \pm 0.01$ A. The small distortion from the idealized Co_4S_{10} geometry in which all angles are tetrahedral is in the sense of

FIGURE. The $[(CoSPh)_4(\mu_2-SPh)_6]^{2-}$ cluster as it occurs in $(Me_4N)_2Co_4(SPh)_{10}$. Co-Co distances are in the range 3.85–3.89 Å; Co-S (bridging) = 2.32 \pm 0.01 Å; Co-S (terminal) = 2.25 \pm 0.01 Å; < Co-S-Co = 113 \pm 1°.

increased Co–Co distances; \ddagger bridging angles at S are $113 \pm 1^{\circ}$.

The electronic spectrum of $[(CoSPh)_4(\mu_2-SPh)_6]^{2-}$ (MeCN solution) is typical of tetrahedral Co^{Π} and closely resembles that of $[Co(SPh)_4]^{2-}$ in the *d*-*d* transition regions. How-ever, in the 19,000–28,000 cm⁻¹ region the cluster possesses additional lower-energy intense charge-transfer absorptions. The magnetic susceptibility data for [(Me₄N)₂Co₄(SPh)₁₀] also reveal electronic interactions between high-spin submolecules. A model with four spin-quartet sub-molecules, interacting under T_d symmetry with an interaction parameter⁹§ J = -17 cm⁻¹ describes the magnetic susceptibility variation in the range 80-300 K with an average deviation of 2%. Although small, the discrepancies between the data and this model are systematic, and more detailed magnetic studies are in progress. Preliminary magnetic susceptibility data for the *p*-thiocresol homologue, crystallized as [{(C_6H_{11})₂ NH_2 }₂ $Co_4(p-MeC_6H_4S)_{10}$], indicate an increased magnitude for J, ca. -23 cm^{-1} .

The $[(CoSPh)_4(\mu_2-SPh)_6]^{2-}$ cluster structure is unprecedented for both CoII and monothiolate ligands. The above geometric and electronic structural data indicate that the clustering is a consequence of ligand bridging, not metalmetal bonding.

More extensively bridged Co-SPh oligomers or polymers have not been detected in solutions where $[Co^{2+}]/[PhS^{-}] >$ 0.4. A compound $[Co(\mu_2-SPh)_{4/2}]_n$ with edge-shared tetrahedra might be expected; if it exists it has very high solubility in MeCN-EtOH. In solution $[Co_4(\mu_2-SPh)_6-$ (SPh)₄]²⁻ is not subject to hydrolysis, but is oxidized rapidly by dioxygen (rate proportional to proticity of the medium) forming a dark maroon compound totally insoluble in all solvents.10

MeCN-EtOH solutions containing both PhS- and Clwith Co^{2+} , at molar ratios $[Co^{2+}]$: $[PhS^{-}]$: $[Cl^{-}]$ ca. 1:2:1, contain another green-black cluster complex as the main component. This species, which is more sensitive to dioxygen than $[Co_4(\mu_2\text{-SPh})_6(SPh)_4]^{2-}$, appears to be $[Co_4(\mu_2\text{-}SPh)_6(SPh)_4]^{2-}$ SPh)₆-Cl₄]²⁻. It may be precipitated as its Me₄N⁺ salt, which is also intramolecularly antiferromagnetic.

Financial support from the National Science Foundation and the Research Committee of the Graduate School, University of Wisconsin, is gratefully acknowledged.

(Received, 30th June 1975; Com. 741.)

 $\dagger [(Me_4N)_2Co_4(SPh)_{10}]; \text{ brown black crystals: } a = 13.031(2), b = 23.590(4), c = 12.806(2) \text{ Å}, \alpha = 92.28(1)^\circ, \beta = 115.04(1)^\circ, \beta = 115.04(1)^\circ,$ $\gamma = 79.12(1)^{\circ}$: 5121 observed reflections (Mo- K_{α} radiation): with anisotropic refinement of all non-hydrogen atoms, $R_{\rm F} = 3.5\%$.

t The $\overline{d}_{CO-CO}/\overline{d}_{CO-S}$ index is 1.666, vs. the idealized value of 1.633.

§ Defined by the interaction Hamiltonian $H_{ex} = -\sum_{i>j} J S_i \cdot S_j$. The constraint g = 2.00 was imposed.

^{i>j} ⁱ (a) R. C. Mehrotra, V. D. Gupta, and D. Sukhani, *Inorg. Chem. Acta Rev.*, 1968, **2**, 111; (b) D. C. Bradley and K. J. Fisher, 'MTP International Review of Science, Inorg. Chem., Series One, 1972, 565. ² Exceptions are the cyclic hexametallic structures M₆(SR)₁₂, M = Ni or Pd, R = Et, Pr^a, or CH₂CH₂OH: P. Woodward, L. P. Dahl, E. W. Abel, and B. C. Crosse, *J. Amer. Chem. Soc.*, 1965, **87**, 5251; N. R. Kunchur, *Acta Cryst.*, 1168, 1623; R. O. Gould and M. M. Harding, *J. Chem. Soc.* (A), 1970, 875. ^a W. Lovenberg, ed. 'Iron-Sulfur Proteins' Vols. I and II, Academic Press, New York, 1973; W. H. Orme-Johnson, *Ann. Rev. Biochem.*, 1973, **42**, 159. ^d E. T. Adman, L. C. Sieker and L. H. Iensen, *J. Biol. Chem.*, 1072, 249, 2087.

Biotenem., 1973, 42, 159.
E. T. Adman, L. C. Sieker, and L. H. Jensen, J. Biol. Chem., 1973, 248, 3987.
B. A. Averill, T. Herskovitz, R. H. Holm, and J. A. Ibers, J. Amer. Chem. Soc., 1973, 95, 3523; L. Que, Jr., M. A. Bobrik, J. A. Ibers, and R. H. Holm, J. Amer. Chem. Soc., 1974, 96, 4168.
Some insoluble paramagnetic compounds Co(SR)_n. n = 2, 2.67, 2.75, 3, have been briefly reported, but with inadequate characterization data: D. C. Bradley and C. H. Marsh, Chem. and Ind., 1967, 361.
W. Beck, K. H. Stetter, S. Tadros, and K. E. Schwarzhans, Chem. Ber., 1967, 100, 3944; W. Beck, W. P. Fehlhammer, K. H. Stetter, and S. Tadros, 100, 205; R. R. Hellohang and R. S. Nubelm. J. Chem. Soc. (4), 1071–229.

Stetter, and S. Tadros, Chem. Ber., 1967, 100, 3955; B. R. Hollebone and R. S. Nyholm, J. Chem. Soc. (A), 1971, 332.

⁸ R. H. Benno and C. J. Fritchie, Jr., J.C.S. Dalton, 1973, 543.
 ⁹ I. G. Dance, Inorg. Chim. Acta, 1974, 9, 77.

¹⁰ This compound is probably analogous to the insoluble cobalt mercaptides reported by Bradley,⁶ no structural information is available.